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The flow of a periodic suspension of two-dimensional viscous drops in a closed channel 
that is bounded by two parallel plane walls executing relative motion is studied 
numerically using the method of interfacial dynamics. Ordered suspensions where at 
the initial instant the drops are arranged in several layers on a hexagonal lattice are 
considered for a variety of physical conditions and geometrical configurations. It is 
found that there exists a critical capillary number below which the suspensions exhibit 
stable periodic motion, and above which the drops elongate and tend to coalesce, 
altering the topology of the initial configuration. At sufficiently large volume fractions, 
a minimum drop capillary number exists below which periodic motion is suppressed 
owing to the inability of the drops to deform and bypass other neighbouring drops in 
adjacent layers. This feature distinguishes the motion of dense emulsions from that of 
foam. The effects of capillary number, viscosity ratio, volume fraction of the dispersed 
phase, lattice geometry, and instantaneous drop shape, on the effective stress tensor of 
the suspension are illustrated and the results are discussed with reference to theories of 
foam. Two simulations of a random suspension with 12 drops per periodic cell are 
performed, and the salient features of the motion are identified and discussed. These 
include pairing, tripling, and higher-order interactions among intercepting drops, 
cluster formation and destruction, and drop migrations away from the walls. The 
macroscopic features of the flow of random suspensions are shown to be significantly 
different from those of ordered suspensions and quite independent of the initial 
condition. The general behaviour of suspensions of liquid drops is compared to that of 
suspensions of rigid spherical particles, and some differences are discussed. 

1. Introduction 
Suspensions of deformable particles, including gas bubbles, liquid drops, capsules, 

and biological cells, exhibit a variety of behaviour and a broad spectrum of rheological 
properties. Their rich phenomenology is attributed to changes in the shape and 
orientation of the suspended particles under the influence of an external flow, as well 
as to interparticle and particle-wall interactions that may lead to particle clustering 
and enhanced migration away from the boundaries of the flow. The behaviour of a 
suspension in a particular domain of flow depends on a number of parameters 
including the volume fraction, initial spatial and size particle distribution, physical 
properties of the dispersed and suspending fluids, and the structural constitution and 
associated mechanical properties of the interfaces. 

The rheology of suspensions of liquid drops with constant surface tension has been 
analysed on a number of occasions, and a series of studies has been devoted to 
illustrating the motion of dilute suspensions where particle interactions are neglected. 
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These asymptotic theories furnish macroscopic constitutive equations that incorporate 
the first-order contribution of the particles to the effective stress tensor of the 
suspension with respect to the particle volume fraction. Taylor (1932) considered 
suspensions of spherical liquid drops, Schowalter, Chaffey & Brenner (1968) and 
Frankel & Acrivos (1970) considered suspensions of slightly deformed liquid drops, 
and Kennedy, Pozrikidis & Skalak (1993) considered suspensions of highly deformed 
liquid drops in a simple shear flow. 

Extending the first-order analyses to incorporate higher-order corrections is 
hampered by uncertainties in specifying the instantaneous spatial distribution of the 
particles. One effective, albeit artificial, way of bypassing this difficulty is to consider 
ordered suspensions in which the particles are arranged at the vertices of a lattice, and 
the external flow is such that the structure of the suspension is a periodic or an almost 
periodic function of time (Adler & Brenner 1985). Unfortunately, although ordered 
suspensions are known to form spontaneously under certain conditions, their 
occurrence is the exception rather than the rule, and there is sufficient evidence to 
indicate that their behaviour at moderate and large volume fractions is fundamentally 
different from that of random suspensions that are routinely encountered in practice. 
Several authors have presented detailed analyses of the motion of ordered suspensions 
where the particles are arranged on cubic and rectangular lattices, spanning the whole 
range from the dilute limit to maximum packing (Pozrikidis 1993). But in view of the 
above limitations, the results of these studies must be interpreted in a limited physical 
context. 

Another group of studies has addressed the rheology of highly concentrated 
emulsions and foams (Bikerman 1973). A comprehensive review of relevant theoretical 
and experimental studies is given by Kraynik (1988), and more recent work is reported 
by Reinelt & Kraynik (1989, 1990) and Kraynik, Reinelt & Princen (1991). The bubbles 
or drops in a concentrated emulsion are separated by thin films of suspending fluid that 
meet at multiple junctions called the Plateau borders. In the absence of global motion, 
molecular forces or external agents are necessary in order to stabilize the films and to 
sustain the foam for an extended period of time. A typical rheological study of foam 
is based on a series of simplifications including two-dimensionality, monodisperse 
constitution, and perfectly periodic spatial structure. Bidisperse and polydisperse 
foams are considered by Khan & Armstrong (1987) and Kraynik et al. (1991) 
respectively. An effort to extend the theory to three dimensions has been made recently 
by Kraynik & Reinelt (1992) and Reinelt & Kraynik (1992). 

A distinguishing feature of ordered foam motion considered in previous theoretical 
studies, is that the displacements of the centres of the thin films that separate cells are 
affine with respect to the macroscopic strain. As a result, the instantaneous structure 
and properties of the foam are determined exclusively by the instantaneous 
macroscopic strain, and the motion may be analysed merely on geometrical grounds 
neglecting the effects of fluid flow. Beginning with Princen (1979, 1983), a large number 
of studies have considered the elastic-plastic response at small capillary numbers. The 
flow within the films and at the Plateau borders is either overlooked (Princen 1979, 
1983; Kraynik & Hansen 1986) or assumed to be independent of the global motion of 
the foam (Khan & Armstrong 1986, 1987; Kraynik & Hansen 1987). Since the 
dynamics is sustained mainly by capillary forces, these models are successful in 
predicting a yield-stress and an elastic behaviour, but have difficulties in assessing the 
viscous contribution in a rigorous manner and with reasonable confidence and 
sufficient accuracy. 

In a recent study, Reinelt & Kraynik (1990) built on a previous analysis by Schwartz 
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& Princen (1987) to devise an improved foam model that is capable of accounting for 
the flow at the Plateau borders using a film withdrawal mechanism proposed by 
Mysels, Shinoda & Frankel (1959). This flow is considered to make the dominant 
contribution to the overall rate of viscous dissipation. The theoretical model is valid at 
small capillary numbers Ca based on the macroscopic strain and cell size, and pertains 
to circumstances where the interfaces in the thin-film region have become inextensible 
due to the presence of surfactants. In addition, the foam is assumed to be wet, which 
means that the volume fraction of the continuous phase is small enough that the 
suspension is highly concentrated, but large enough that the structure of the foam is a 
continuous function of the strain. The results of Reinelt & Kraynik (1990) showed that 
the foam is elastic for small but finite deformations, the effective viscosity increases as 
the volume fraction of the suspended phase is increased, and the viscous contribution 
to the instantaneous stress of the suspension scales with the capillary number raised to 
the $ power. More will be said about this model in $4 of this paper. 

When the assumptions of extremely large volume fractions and ordered structure are 
relaxed, all available theoretical models become either ineffective or prohibitively 
complex and direct numerical simulation becomes necessary in order to make further 
progress. For suspensions of rigid spherical particles, the application of boundary 
integral and related methods has led to the successful tackling of a host of problems 
of long-standing interest. Brady and coworkers applied their Stokesian dynamics 
method to study the behaviour of monodisperse suspensions of spherical particles 
arranged in a monolayer in an infinite or bounded domain of flow (Brady & Bossis 
1988; Durlofsky & Brady 1989; Nott & Brady 1991). More recently, Revay & Higdon 
(1992) applied this method to study the sedimentation of a suspension of monodisperse 
spheres of two different densities in a three-dimensional periodic arrangement. 

For suspensions of deformable particles, the complications associated with 
non-spherical evolving shapes have presented unsurpassed obstacles to large-scale 
numerical simulation ; previous studies of drop motions have been restricted to solitary 
or at best pairwise motions. As a compromise, one may reduce the dimensionality of 
the problem by considering the idealized case of two-dimensional suspensions with 
cylindrical interfaces (Zhou & Pozrikidis 1993, hereafter referred to as ZPI). There is 
no doubt that this removes a certain degree of physical relevance, as discussed in ZPI, 
but allows us to perform extensive numerical investigations. Overall, taking into 
account the complexity of the problem in its general form, the assumption of two- 
dimensional motion appears, at least to these authors, to be an acceptable simplification 
and a precursor of studying motions in three dimensions. Experimental observations 
have shown that non-dilute emulsions exhibit shear-thinning and elastic behaviour, 
where the latter is evidenced by a positive normal stress difference wadas, Goldsmith 
& Mason 1976; Han & King 1980). These features have been identified in ZPI for 
suspensions of a single array of drops, suggesting that two-dimensional models 
preserve some important aspects of three-dimensional emulsion flow. 

Considering two-dimensional motions allows the application of the method of 
interfacial dynamics for performing large-scale dynamic simulations. This method is 
based on an improved version of the boundary integral method formulated by Rallison 
& Acrivos (1978) and developed further by Pozrikidis (1992). The numerical procedure 
involves computing the evolution of the interfaces by solving a system of Fredholm 
integral equations of the second kind for the interfacial velocity. The implementation 
of the method is described in ZPI. In the present paper, we shall apply this method to 
conduct extensive numerical investigations of the motion of suspensions with ordered 
and random structure. To this end, we re-emphasize the order-or-magnitude increase 
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in computational demands for the simulation of drops compared to that of rigid 
particles; for our most involved computations, the number of scalar unknowns is 
roughly 15 times that required for rigid spheres in a three-dimensional configuration, 
and 30 times that required for rigid cylinders or spheres arranged in a monolayer. 

In ZPI we proposed a computational framework for studying the flow of suspensions 
of two-dimensional drops in channels. The physical model consists of a suspension of 
two-dimensional drops flowing in a channel which is bounded by two parallel plane 
walls. Considering wall-bounded instead of doubly periodic flows allows us to assess 
the effect of particle-wall interactions and circumvent computational difficulties 
associated with infinite divergent sums that are inherent in the two-dimensional 
double-periodic Green’s function. In ZPI we studied the motion and stability of single 
files of drops with the main objectives being to examine the significance of drop size 
compared to the width of the channel, illustrate the effects of viscosity ratio and 
capillary number, and investigate the nature of the painvise drop interactions. 

In the present study we consider more involved configurations with a larger number 
of drops, assuming that the suspension is composed of an infinite sequence of periodic 
cells, and each cell contains several drops which either are arranged in a regular manner 
in several rows, or are dispersed in a random fashion. The numerical studies involve 
solving a series of initial value problems in which the motion of spatially periodic 
suspensions of drops is computed from a specific initial configuration. The parametric 
space explored in the numerical studies complements that considered by previous foam 
models corresponding to very large volume fractions and small capillary numbers. To 
this end, we remark that foam theories are based on the presence of intermolecular 
forces while our results are obtained by considering the fluid mechanics of the motion 
alone with a simple interfacial behaviour characterized by constant surface tension. 

We perform dynamic simulations of ordered suspensions in an extended range of 
volume fractions, focusing, in particular, on the limit of high volume fractions where 
the suspension becomes concentrated and seemingly resembles a foam. These 
parametric studies address the effects of the viscosity ratio, capillary number, initial 
drop shape, and geometrical arrangement, and the results are discussed with reference 
to predictions of available models for foam. Furthermore, we perform two dynamic 
simulations of a random suspension that contains 12 drops within each periodic cell 
with different initial drop distributions. These simulations reveal a number of novel 
features concerning drop interactions and cluster formations and provide some insights 
into the effect of the initial conditions. The results allow us to assess the effect of the 
instantaneous particle shape and orientation on the effective properties of the 
suspension, and to identify salient differences in the behaviour of suspensions with 
random and ordered structure. 

The behaviour of the suspended drops near the walls of the channel is an important 
aspect of the motion. Experimental observations have indicated that concentrated 
suspensions tend to slip over the boundaries of a channel with a slip velocity that 
depends upon the rate of the motion, the global structure of the suspension, and the 
smoothness of the wall; boundary effects are confined to the first adjacent layer of 
drops (Princen 1985 ; Kraynik 1988). Furthermore, experimental and theoretical 
studies have demonstrand that deformable particles migrate away from the boundaries 
of a flow (Smart & Leighton 1991 ; Kennedy et al. 1993), and the wall zone of a channel 
may be depleted of particles yielding a coreannular flow (Cox & Mason 1971; 
Gauthier, Goldsmith & Mason 1972; Vadas et al. 1976; Skalak, Ozkaya & Skalak 
1989). At high concentrations, the core moves in a plug-flow mode while the annular 
layer provides lubricating support. Our simulations of ordered suspensions will 
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illustrate the behaviour of interfaces near the walls of the channel. Our simulation of 
random suspensions will investigate collective drop migrations and the formation of 
particle-free zones. 

Blanc et al. (1983) and Durlofsky & Brady (1989) found that dense suspensions of 
rigid spheres flowing between two parallel walls in a Couette flow device develop 
particle clusters, and the formation and destruction of clusters involve a variety of 
motions. At moderately high concentrations, the characteristic size of the clusters 
becomes comparable with the clearance of the channel. There is a critical concentration 
at which the suspension exhibits a singular behaviour similar to that observed in 
percolation-type processes. The hydrodynamic interactions between the clusters 
themselves and between the clusters and the boundaries cause increased rates of 
dissipation, and may force the suspension to engage in a plug-flow mode. 

In the case of suspensions of liquid drops, the added factor of particle deformability 
and the feasibility of topological changes through particle coalescence provide relieving 
mechanisms that may prevent the onset of large stresses associated with particle 
interceptions and large cluster formations. The presence of intermolecular forces and 
surface-active agents will certainly play a crucial role in determining the nature of 
particle interactions in close contact. It is thus likely that a suspension of liquid drops 
will not exhibit a singular behaviour at the critical concentration, i.e. a percolation-like 
transition, at least at large enough capillary number and low enough drop viscosities. 
Evidence for this is provided by observations and measurements for concentrated 
emulsions and foams (Han & King 1980; Kraynik 1988), as well as by the numerical 
simulations reported in this paper. 

In addition to eliminating large stresses, drop deformability is also responsible for 
an elastic-plastic behaviour of stable foams when the volume fraction exceeds the 
critical value corresponding to maximum packing of circular drops. The significance of 
drop size and concentration on the dynamics of the microstructure and the effective 
stresses of a dense emulsion are not understood with satisfactory accuracy, and some 
insights will be gained from the results of our studies. 

Nott & Brady (1991) studied the effect of shear rate variations across a channel on 
the motion of a suspension of spherical particles due to an imposed pressure gradient, 
investigating, in particular, the consequences of particle migrations from regions of 
high shear rates to regions of low shear rates. A mean pressure gradient can be included 
in a straightforward fashion in our physical model, and will be considered in a 
forthcoming paper. 

2. Problem statement and numerical method 
We consider the motion of a periodic suspension of neutrally buoyant viscous drops 

with viscosity Ap suspended in an ambient fluid with viscosity ,u between two parallel 
plane walls in a relative translation, as shown in figure 1. We assume that there is no 
pressure drop in the axial direction other than that imposed by the restriction that the 
total flow rate along the channel is equal to zero. Physically, the channel is assumed to 
be closed at the two ends. 

At small Reynolds numbers, the flow is governed by the equations of Stokes flow 
with the no-slip and no-penetration condition required over the two walls. Other 
boundary conditions are that the velocity and tangential component of the surface 
force are continuous across the interface of each drop, and the normal component of 
the surface force undergoes a discontinuity due to a constant surface tension y. 

We render all variables non-dimensional using as characteristic length the half-width 
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FIGURE 1. A periodic suspension of two-dimensional drops flowing in a channel. The motion is 
driven by the relative translation of the two walls; the channel is closed at both ends. 

of the channel H ,  as characteristic velocity the wall velocity U,  as characteristic time 
H / U ,  and as the characteristic stress p U / H .  Assuming that all drops have identical 
areas we find that the motion depends on the viscosity ratio A, capillary number 
Cu = p U / y ,  and initial drop distribution. In certain parts of our discussion it will be 
appropriate to replace the macroscopic capillary number Cu with the drop capillary 
number Cud = ( a / H )  Cu defined with respect to the equivalent radius of the drops a. 
The drop volume fraction $d is defined as the ratio of the total area of all drops 
contained in one periodic cell to the total area of the cell itself. 

Using the boundary integral representation for Stokes flow, we express the velocity 
field in terms of the integral equations (1)-(2) presented in ZPI. Equation (2) of ZPI 
is a Fredholm integral equation of the second kind for the interfacial velocity whose 
solution may be computed by successive iterations. The rate of convergence of the 
iterations is increased by applying eigenvalue deflation. In the special case h = 1 , where 
the viscosity of the drops is equal to the viscosity of the suspending fluid, equation (2) 
of ZPI yields an expression for the interfacial velocity in terms of a contour integral 
over all interfaces. 

The Green’s function involved in the integral equation represents the flow due to an 
array of point forces along the channel. The associated pressure is adjusted so that the 
corresponding induced flow rate along the channel is equal to zero. This means that 
the pressure drop over one period of the flow is not equal to zero, but depends on the 
lateral position of the point forces. This Green’s function is the natural choice for 
studying a flow with vanishing flow rate such as that established in a closed channel 
with moving walls. To study a flow with vanishing pressure drop, such as the flow 
established in a circular Couette flow device, it is appropriate to use a Green’s function 
with an associated finite flow rate but vanishing pressure drop. This Green’s function 
is derived from the previous one by adding an appropriate plane-Poiseuille flow. 

Briefly, we compute the evolution of the suspension using the following procedure. 
First, we distribute a set of marker points along each drop interface, approximate the 
interface using cubic splines, and compute the normal vector and curvature by 
differentiating with respect to arclength. At the initial instant when the drop interfaces 
are circular, the marker points are evenly distributed along the interfaces. In the 
following time steps, the total number and density of marker points along each drop 
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interface is adjusted according to the local arclength and curvature (ZPI). Next, we 
solve the integral equation for the interfacial velocity field using an iterative method 
outlined in ZPI, and advance the position of the marker points using the 
Runge-Kutta-Fehlberg method of orders 2 and 3 (RKF23). The advantage of using 
an adaptive time-stepping scheme, such as the RKF23, over a fixed time-stepping 
scheme, such as a regular Runge-Kutta method, is that sawtooth-type numerical 
instabilities are eliminated by maintaining the numerical error under a specified 
threshold. For random suspensions, to minimize the CPU time, we use a simpler 
Euler’s methods with a time step that is small enough that numerical instabilities are 
suppressed. Further details on the numerical procedure and accuracy of the 
computation are given in Zhou (1993). 

To monitor the accuracy of the simulations, we compute the area of each drop at 
every time step. For drops initially arranged on a hexagonal lattice, the maximum 
change in area due to numerical error was less than 0.7 % in all cases. For drops that 
are initially distributed in a random manner, the maximum change of the area could 
reach 1 % after 40 time steps. To prevent the accumulation of this and related errors 
over the 620 steps of the simulation, we normalized the area of each drop after every 
40 time steps by performing a weak isotropic expansion or compression. This artificial 
process has no fundamental effect on the behaviour of the suspension. 

Almost all computations were performed on the CRAY Y-MP8/864 computer of 
the San Diego Supercomputer Center. For ordered suspensions, where the drops are 
arranged initially on a hexagonal lattice, a complete simulation typically required 
30 min to 2 hr of CPU time. For each of the two random simulations with 12 drops 
per periodic cell and h = 1, the computation required 6.5 CPU min for each time step 
at an approximate total expense of 67 CPUhr for about 620 time steps. Some 
simulations of two-layered suspensions were performed on SUN Sparcstations I. 

3. Effective stresses and pressure drop 
We define the effective stress tensor of the suspension (a,) as the volume average 

of the stress tensor over the area of one periodic cell. It should be pointed out, however, 
that, because of the presence of the walls, the suspension is not homogeneous in all 
directions and the volume average (aii) is not identical to the ensemble average, as it 
is for a homogeneous system (Batchelor 1970). But using the divergence theorem, one 
may show that (al2) is identical to the average shear stress over the walls of the 
channel, which has been defined by previous authors to be the effective shear stress of 
a suspension in shear-driven flow (Masliyah & van de Ven 1986; Durlofsky & Brady 
1989). Furthermore, the present definition of the effective stress of the suspension may 
be justified on a rigorous basis by considering the behaviour of a general material 
whose boundary is subjected to a homogeneous strain (Goddard 1986). 

In (1 1) of ZPI we derive an expression for (ai j)  in the form 

where Eii is the viscous stress tensor over the area of the drops given by 
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and Z,, is the surface-energy tensor given by 

H .  Zhou and C. Pozrikidis 

Xi, = ti ti dl. 
J S  , (3) 

The contour integrals are over all interfaces, n is the normal vector, and t is the tangent 
vector in the counterclockwise direction. It should be noted that (3) is a special case of 
the more general definition 

C.. = y K,nixjdS = (6,j-n,nj)dS J,, J SD (4) 

introduced by Rosenkilde (1 967), which is applicable for closed three-dimensional 
interfaces; K, is the mean curvature. The second integral in (4) provides us with a 
convenient formula for computing the surface-energy tensor from the normal vector, 
circumventing the sensitive computation of the curvature. The viscometric functions 
include the effective shear viscosity pEFF and the normal stress difference A’”. These are 
computed using equations (1 l k (  13) of ZPI. 

When the viscosity of the drops is identical to that of the suspending fluid, i.e. 
h = 1, non-isotropic effective stresses are due solely to surface tension, and ( ai,) may be 
computed from knowledge of the instantaneous interfacial shape but not of the flow. 
In this case, (a,,) is identical to the average stress tensor computed by Reinelt & 
Kraynik (1989, 1990) for two-dimensional foam except that, in their case, the surface 
tension y is a variable and must be placed inside the integral. It should be pointed out, 
however, that in the available theories of foam, the geometry of the drops is dictated 
by considerations that either ignore or account for a weak motion of the fluid. 

In our simulations we require that the flow rate along the channel is equal to zero, 
which implies that the channel is closed at the ends. As a result, we obtain a finite 
pressure drop across each period of the cell, denoted by Ap. The parabolic flow 
associated with Ap is necessary in order to counteract the flow induced by drop motions 
and thus bring the total flow rate down to zero. For ordered suspensions with 
symmetric structure, the flow induced by drop motions vanishes and Ap is equal to 
zero, but for random suspensions Ap is finite, equal to the difference in the shear force 
exerted on the two walls. In our mathematical formulation, the pressure drop is 
mediated through a quadratic term in the Green’s function shown in equations 
(A 11k(A 12) of ZPI; clearly the value of Ap depends on the instantaneous drop 
profiles and spatial distribution. 

4. Ordered suspensions 
We consider the evolution of a periodic suspension of circular drops initially 

arranged on a hexagonal lattice, as illustrated in figure 2(a). When the volume fraction 
of the drops q5d is less than the maximum volume fraction for touching circular drops 
$2, the drops may assume a circular hydrostatic shape that is required to minimize the 
total surface free energy of the mixture. Under the stipulation that the minimum 
separation between the drop surface and the wall is half the minimum separation 
between two neighbouring drops, we find that the initial state of the suspension is 
determined uniquely by specifying the number of rows N and the volume fraction q5d. 
The drop radius a, the ratio of the minimum separation between two neighbouring 
drops Dmin to the drop radius a, E = Dmin/a, and periodicity L, may be com- 



Flow of suspensions of drops in a channel 111 

0 

FIGURE 2. Drop profiles evolving from an initially hexagonal lattice of circular drops with four layers, 
for h = 1, Cud = 0.02527, and q5d = 0.7216, at times: (a) t = 0, (b) 1 /43 ,  (c) 2 / 4 3 ,  ( d )  3 /43 ,  (e) 
4 / 4 3 ,  cf> 5 / 4 3 ;  (g) the deformation parameter D and orientation angle 0. 

puted using the geometrical conditions s = - 1 + [(7"2$,(2 + 1 / 3 ( N -  l)))]:, 
a = 2/[(2 + 1/3(N- 1)) (1 + s)], and L = 2( 1 + e) a. The maximum volume fraction 
corresponding to touching drops is given by $: = Nn/[2(2 + 1 / 3 ( N -  l))]. 

First, we consider motions for the computationally simplest case h = 1 .  In ZPI we 
studied the motion of the single file, i.e. N = 1, and found that there exists a critical 
value of Ca below which the drops deform and obtain a stationary shape, and above 
which the drops continue to deform without ever reaching a steady state, independently 
of the drop size. In figure 2(a-f> we present a sequence of instantaneous drop profiles 
for N =  4, Ca = 0.1, or Cad = 0.02527, and 4, = 0.7216. Note that for N = 4 the 
maximum volume fraction for touching drops is $2 = 0.873 13. The four shaded drops 
in the six frames may be used as a reference in order to monitor the relative motion of 
the individual layers in the evolving array. 

Comparing the times corresponding to the six frames shown in figure 2 (a-f> we find 
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that, after an initial transition period, the array evolves in a periodic manner with a 
period that is nearly equal to the time it takes each wall to travel one cell spacing 
downstream, i.e. 2/2/3. This indicates that the motion of the centres of the drops is 
approximately affine, meaning that the drops are convected nearly by the linear 
velocity field that would prevail in the absence of the drops, with a negligible slip 
velocity over the walls and negligible migration away from the walls. It is interesting 
to observe the switching of neighbouring drops and the coalescence and separation of 
the thin films at the Plateau borders, a process called ‘hopping’ by Prud’homme or 
‘Tl’  by Weaire (Kraynik 1988). We thus find that the basic micromechanical 
mechanism and some essential features of foam flow are captured in our simulations. 

In figure 2(g) we present the corresponding evolution of the Taylor deformation 
parameter D of the drops in the second row, where D = (L  - M)/(L  + M )  and L,  M are 
the maximum and minimum dimensions of a drop, and the drop orientation angle 0 
(Taylor 1934). It is clear that, after a short initial transition period, the drops deform 
in an oscillatory manner with a period that is almost identical to 2/2/3, and the 
amplitude of the oscillations is comparable with the corresponding mean values. The 
inclination of the drops varies from n/4 to almost n/13 through one cycle of the 
periodic motion. Minimum orientation corresponds to instants where drops in 
different layers lie over each other to form vertical columns. Furthermore, it is 
interesting to observe that there is a noticeable phase shift in the oscillations of D and 
0. The rheological significance of this behaviour will be addressed later in our 
discussion. Our results for Ca = 0.1964, corresponding to Ca, = 0.04962, reveal 
qualitatively similar drop profiles and behaviour. 

In figure 3 (a-k) we present a sequence of profiles for Ca = 1 .O, corresponding to 
Cad = 0.2527, and observe that the drops assume a family of shapes that are hybrids of 
an elongated parallelogram and a slender elliptical shape. Close inspection reveals that 
the deformation and orientation of the drops that are adjacent to the walls are slightly 
different than those of the drops in the middle rows. Boundary effects are seen to cause 
a noticeable migration of the interfaces away from the walls, but have a small influence 
on the behaviour of the middle rows near the centreline of the channel. Evidently, the 
effect of the walls is shielded by the first adjacent layer of drops. 

Diagrams of D and 0 with respect to time for Ca, = 0.2527, not shown in the text, 
revealed a monotonic increase with small oscillations around an asymptotic value, 
indicating that the motion of the suspension is not perfectly periodic. Inspecting figure 
3 (g, i, k )  reveals that the thickness of the films that separate adjacent drops in each row 
diminishes in time, and the onset of dimpled interfacial shapes may be considered a 
precursor of film breakup and drop coalescence. Whether the drops will continue to 
elongate or coalesce at finite elongation, could not be assessed with confidence in our 
simulations. If the drops coalesce, the suspension will obtain a stratified layered 
structure, and the longitudinal velocity profile will be linear across each stratum. 

Overall, our results indicate that a suspension with Cud = 0.02527 or 0.04962 
executes stable periodic motion, whereas a suspension with C, = 0.2527 is likely to 
suffer drop coalescence. It should be emphasized, however, that the presence of 
intermolecular forces and external agents will have a profound effect on the behaviour 
of the thin films, and might stabilize the suspension and sustain the periodic motion at 
high values of Ca,. In general, our results are in agreement with experimental 
observations suggesting that a foam can be destroyed by subjecting it to a sufficiently 
high-shear-rate motion (Princen 1983). 

Our results suggest the existence of a critical capillary number below which the drops 
execute a stable periodic motion and above which they continue to elongate and tend 
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FIGURE 3. Drop profiles evolving from an initially hexagonal lattice of circular drops with four layers, 
for h = 1, Cad = 0.2527, and q5d = 0.7216, at times: (a) t = 0, (b) 1 / 4 3 ,  (c )  2 / 4 3 ,  ( d )  3 / 4 3 ,  (e) 
4 / 4 3 ,  cf> 5 / 4 3 ,  ('g) 6/-\/3, (h) 7 /1 /3 ,  (i) 8 / 4 3 ,  ( j )  9 / 4 3 ,  (k) 1 0 / 4 3 .  The effect of Cad may be 
assessed by comparing this figure with figure 2. 

to coalesce altering the topology of the initial configuration. Stable motion, however, 
it not to be expected for small cad at sufficiently large volume fractions $d > 4:; here 
4: = 3Nn/[8(2+ 2/3(N- I))] is the volume fraction when the vertical separation of the 
centres of drops at adjacent layers is equal to the drop diameter, i.e. E = 2/2 /3  - 1. 
Under these conditions the drops will resist deformation and will be unable to roll over 
each other in order to engage in a typical foam flow. Instead, they will press against 
each other instigating coalescence, while the walls will be slipping over the top and 
bottom rows. This behaviour was evident in our numerical simulations. In summary, 
at large volume fractions there exists a lower critical capillary number under the drops 
fail to execute the stable periodic motion described above. 

4.1. EfSective stresses 
We consider next the behaviour of the effective stress tensor of the suspensions 
illustrated in figures 2 and 3.  In figure 4(u-c), we plot the evolution of the effective 
shear viscosity pEFF and normal stress difference Jlr. Note that at the initial instant 
pEFF = 1 because h = 1, and JV = 0 because the drops have a circular, isotropic shape. 
Clearly, both pEFF and N exhibit oscillatory behaviour about well-defined mean 
values, and the amplitude of the oscillations decreases as Ca is increased, i.e. as the 
drops become more deformable. For Cud = 0.02527 the amplitudes of the oscillation 
are comparable with the corresponding mean values and the minimum value of Jlr is 
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FIGURE 4. The evolution of the effective viscosity of the suspension p,,,, and normal stress difference 
N ,  for h = 1 and 9, = 0.7216 (a)  Cud = 0.02527, (b) 0.04962, ( c )  0.2527, for N = 4 and (4 0.04962 
for N = 2. Solid line for pEFF,  dashed line for N .  

close to zero. As a secondary feature, we observe that at Cad = 0.02527 and 0.04962, 
pEFF overshoots at the second peak. 

Comparing figure 4(a) to figure 2(g), we find that the oscillation of pEFF is nearly 
in phase with both the oscillation of the deformation parameter D and the inclination 
angle 0, indicating that elongated and inclined drops cause a higher viscous dissipation. 
Furthermore, the oscillation of Jlr is nearly out of phase with the oscillation in 0. This 
is because that the non-circular shape of the drops introduces a global anisotropy, and 
the orientation of the drops serves to define the effective principal directions. 

The overall dynamical behaviour of the suspensions may be characterized by the 
time-average values ( p E F F )  and (N) which are found by integrating pEFF and N 
over one cycle of the asymptotic motion at large times. In ZPI we found that the 
asymptotic value of the effective viscosity of single-file suspensions is a monotonically 
decreasing function of Ca, but as Ca is increased, N increases and reaches a maximum. 
Finally, as Ca tends to infinity, and the interface of the drops loses its dynamical 
significance, JV decays to zero. 
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cad 0.02527 0.04962 0.2527 co 
(,uEFF) 3.7714 3.1381 2.8611 1 
(Jf> 2.5244 2.5574 ---- 0 

TABLE 1. A comparison of the time-average effective viscosity and normal stress difference for 
N = 4, 4, = 0.7216, h = 1 at various Cad 

Our computations indicate that ordered suspensions with multiple rows behave in a 
similar manner. Inspecting table 1 we find that as Cad is increased, ( p E F F )  decreases, 
which indicates that the suspension is shear thinning, whereas (N) is always positive, 
which indicates that the suspension exhibits some sort of elastic behaviour. These 
features have been observed in previous experiments on three-dimensional emulsions 
(Vadas et al. 1976; Han & King 1980) and are similar to those exhibited by polymeric 
solutions. In the extreme case Cud = 00, ( N )  vanishes because the interfaces are 
dynamically inactive. 

Having described the behaviour of both the instantaneous and time-average 
viscometric functions, we turn to consider the contribution of viscous effects to the 
effective stress tensor by examining the functional dependence of ( p E F F )  and (N) on 
Cad. Assuming power-law relations of the form ( p E F F )  z CaZ--' and (N) z Cu$-l at 
sufficiently small values of Cad, and using the data in table 1 for Cud = 0.02527 and 
0.04962, we obtain the exponents 01 = 0.62 and /3 = 1.02. Comparing these values with 
= 0.67 and 1 predicted by the quasi-steady asymptotic analysis for foam of Reinelt 

& Kraynik (1990), we find good agreement. 
In the model of Reinelt & Kraynik (1990), the effective stress tensor is computed 

using equation (3) of the present paper with the surface tension y inside the integral. 
The viscous contribution is due to the excess surface tension associated with the viscous 
flow in the Plateau borders, and the scaling law emerge by applying the lubrication 
approximation (Mysels et ul. 1959). In our formulation, viscous effects enter in an 
implicit manner by determining the instantaneous drop profiles. Because of these 
significant differences in physical behaviour, the above comparison serves only to 
demonstrate that the scaling laws are not to be expected to show significant variations 
in the limit as a concentrated emulsion becomes a foam. 

4.2. Effect of volume fraction 
To investigate the effect of volume fraction q$d, we repeated the above computations 
with a reduced volume fraction $d = 0.388 at the same values of the macroscopic 
capillary number Cu. Physically, these numerical experiments correspond to changing 
the drop size while maintaining the dimensions of the channel and the physical 
properties of the fluids constant. We observed behaviour similar to that described 
above but with lower mean values and amplitudes of oscillations of both pEFF and N. 
For instance, for Ca = 0.1 we found ( p E F F )  = 1.7821 and (N) = 0.1750. It is 
interesting to note, in particular, that for Cu = 0.1 we obtained negative values for N 
during a small fraction of each temporal period ; this emphasizes that the instantaneous 
and the time-average behaviour may show important differences. We find that the 
effective viscosity of a suspension increases with increasing the volume fraction of the 
suspended drops, in agreement with experimental observations and theoretical 
predictions for foam and concentrated emulsions (Bikerman 1973; Han & King 1980; 
Reinelt & Kraynik 1990). 
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(4 ( 4  

(4 t = 0, (b) 3 / 4 3 ,  (4 5 / 4 3 ,  (4 7 / 4 3 .  
FIGURE 5.  Drop profiles in a two-layer array with h = 1, Ca = 1.0, 9, = 0.7216, a t  times 

4.3. Efect of number of rows 
We turn next to address the question of what the optimal way of dispersing the drops 
is in order to minimize the force on the walls required to sustain the motion of the fluid, 
subject to a given volume fraction and macroscopic shear rate. For this purpose, we 
consider the effect of number of rows N keeping the volume fraction at the constant 
value q5d = 0.7216, and carry out two simulations with N = 2 and Cu = 0.1, 1, 
corresponding to Cud = 0.04962, 0.4962. 

For Cu = 0.1 or Cud = 0.049 62 we observe that, after an initial transition period, the 
drops evolve in a periodic manner with period equal to 2/.\/3 which is identical to that 
observed previously for N = 4. Comparing the viscometric functions shown in figure 
4(d) to those for N = 4, Cu = 0.1 given in figure 4(u), we find lower mean values and 
smaller amplitudes of oscillation by a factor close to C. The first behaviour indicates that 
increasing the drop dispersivity raises the rate of viscous dissipation. The second 
behaviour may be understood by noting that the drop capillary number for N = 2, 
which is 0.049 62, is higher than that for N = 4, which is 0.025 27, but a higher capillary 
number implies reduced oscillations. We thus find that for a fixed volume fraction, 
increasing the number of rows causes the behaviour of the suspension to deviate more 
strongly from that exhibited by a Newtonian fluid. Comparing figure 4(d) with figure 
4(b), we identify similar behaviour for pBFF and A’”. These results suggest that the 
rheology of the suspension is best described in terms of the drop capillary number Cud 
rather than the macroscopic capillary number Cu. 

For Cu = 1 or Cu, = 0.4962 we find that the drops deform continuously without 
ever reaching either a stationary or an oscillatory state and the shape of the drops 
becomes convoluted, as illustrated in figure 5 ( a d ) .  Appreciable migration of the 
interfaces away from the wall are two distinguishing features of this motion. The 
nature of the asymptotic flow at large times could not be assessed with confidence, and 
two possible scenarios are that the drops develop a layered structure, or else break up 
to form four stable layers of smaller drops. 

Reviewing the motion of the single file N = 1 studied in ZPI and those of the double 
and quadrable files N = 2, 4 considered here, we find that the first one is distinctly 
different, but the second and third exhibit similar features. These differences are 
attributed to the nature of drop interactions : for N = 1 drop interactions are mediated 
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by pairwise motions of side-by-side drops, whereas for N > 1 interactions between a 
drop and all of its surrounding neighbours in adjacent layers play dominant roles. 
Thus, studies of the single file have a limited capacity in describing the physics of the 
motion of general ordered suspensions and foams. But since the effects of the walls are 
confined to the first adjacent layers of drops, the motion of the two- and four-layered 
suspension provide accurate descriptions of the motion of an unbounded suspension 
that evolves under the action of a shear flow, and the convergence of the results with 
respect to the number of layers is fast. 

4.4. EfSect of the viscosity ratio 
In ZPI we found that small drops with high viscosity h = 10 arranged in a single file 
reach a steady state for any value of Ca. Large drops that occupy almost the whole of 
the clearance between the two walls, on the other hand, exhibit continuous deformation 
when Ca is sufficiently large. Our simulations indicate that multiple layers of high- 
viscosity drops filling a substantial portion of the clearance of the channel behave in 
a similar fashion, that is, they continue to elongate when Ca is sufficiently large. For 
instance, for h = 10, N = 4, $& = 0.6063, and Ca = 1, 10 we found no indication that 
the drops will ever reach an asymptotic oscillatory state. 

In general, we find that the behaviour of the suspension is a weak function of A, in 
contrast to the behaviour of solitary drops in a simple shear flow and drops in a single 
file where A was seen to play a critical role in determining the asymptotic motion at 
large times. One explanation is that in multi-layered suspensions, the effects of surface 
tension and of the flow within the films separating adjacent drops are pronounced due 
to the increased interfacial area, whereas the viscous flow within the drops is of 
secondary importance. 

4.5. High volume fractions 
Thus far, we have considered suspensions whose volume fraction is lower than the 
critical volume fraction $2 corresponding to maximum packing of circular drops. In 
the absence of intermolecular forces, stationary suspensions with higher volume 
fractions are not able to reach hydrostatic equilibrium without altering the topology 
of the initial state, and must evolve through film breakup and drop coalescence. 
Indeed, observations have shown that increasing $d from low values produces a 
continuous family of stable suspensions, but as $& approaches $2 the suspensions tend 
to either self-destruct or invert so that the dispersed phase becomes the continuous 
phase and vice versa (Ostwald 1910; Princen 1979). Suspensions at higher volume 
fractions may be stabilized by the action of surface-active agents, and long-lived 
suspensions with volume fractions very close to 1 have been the subject of numerous 
experimental and theoretical studies (Kraynik 1988). 

Our simulations in ZPI indicate that viscous forces in a suspension composed of a 
single file of large drops may prevent film breakup and stabilize the motion, at least for 
an extended period of time. To investigate this possibility for a suspension with 
multiple layers, we consider the evolution of a hexagonal array of hexagonal drops 
illustrated in figure 6(a). Each drop in a middle row is contained within a hexagonal 
cell with side length b, and its corners are rounded off to form circular arcs of radius 
r .  At small film thicknesses, r depends on b and the volume fraction through the 
relation r = 2/3b(l-$,)t/[(l/2-n/2/3)t]. The width of a drop is given by w = 2/3b, 
and b may be computed from the number of files N and the area fraction $& (Princen 
1985, Appendix 1). The boundaries of the drops that are adjacent to the walls are 
pentagons with side length w, and the radii of the two wall corners of the pentagonal 
drop are equal to those of the rest of the corners. 
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FIGURE 6. Profiles of initially hexagonal drops in a hexagonal lattice with h = 1, Ca = 1.0, 
#d = 0.8974, at times: (a) t = 0 ,  (b)  1 / 4 3 ,  (c) 2 / 4 3 ,  ( d )  3 / 2 3 ,  (e )  4 / 4 3 ,  (J) 5 / 4 3 ,  (g)  6 / 4 3 ,  
(h)  1 / 4 3 .  

In figure 6 ( a h ) ,  we present several stages in the evolution of a suspension of 
hexagonal drops with N = 4, $d = 0.8974, E = 0.05, h = 1, and Ca = 1. Switching of 
neighbouring drops and ‘hopping’ or ‘TI ’ occur in a more complicated way than those 
for idealized foams discussed by previous authors (Kraynik 1988; Reinelt & Kraynik 
1990). Clearly, this difference is due to the effects of the fluid flow within the thin films, 
at the Plateau borders, and inside the drops. Although the concentrated suspension 
appears to perform a global periodic motion, examining the detailed shape of the 
interfaces shows that viscous forces that might have acted to prevent film collapse, are 
not strong enough to inhibit squeezing motions. As a result, the surfaces of two 
adjacent drops overlap, meaning that the thin films separating adjacent drops tend to 
collapse at a finite time bringing the numerical simulations to an end. After film 
breakup, the drops will coalesce, small islands of suspending fluid will develop, and the 
suspension will invert. This behaviour demonstrates explicitly the critical importance 
of intermolecular forces and surface-active agents on the stability of a foam. 
Computations with Ca = 0.2, and 0.1 revealed similar behaviour, but with an earlier 
time of film breakup and drop coalescence. 

5. Random suspensions 
In the second stage of our numerical investigations we perform two dynamic 

simulations (hereafter referred as random 1 and 2, respectively) of a disordered 
suspension beginning with two different initial configurations but identical flow 
conditions. At the initial instant, 12 circular drops are placed randomly within each 
periodic cell of dimensions 4 by 2 which is bounded from above and below by the two 
walls. This is the maximum number that could be accommodated with sufficient 
accuracy using the available computational resources. Throughout a simulation, the 
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average number of marker points per drop is roughly 40, which is large enough to 
warrant a sufficiently accurate representation of the interfaces and solutions of the 
integral equations. 

The initial positions of the drop centres were determined by a random-number 
generator. The radius of each drop was set equal to 0.25 yielding a volume fraction of 
0.2945 which is close to the areal fraction 0.30 corresponding to the monolayered 
simulations of rigid spheres presented by Durlofsky & Brady (1989). Furthermore, we 
set h = 1 for computational convenience, and Ca = 1, or Cad = 0.25 in order to 
prevent drop breakup but maintain an appreciable degree of particle deformability. 
Both random 1 and 2 were carried out until t = 22.6, which was found to be long 
enough for the main features of the motion to emerge and the computation of time 
averages to be meaningful. 

5.1. Drop motions and the structure of theflow 
In figures 7 (a-j) and 8 (a-e) we present a sequence of instantaneous drop profiles from 
the beginning to the end of the simulation for random 1 and 2, respectively. One may 
observe a variety of motions including formation of clusters of two, three, or more 
interacting drops, and pairing between the clusters themselves. These motions have a 
strong impact on the elongation and orientation of the individual drops, and we 
observe highly elongated shapes, sigmoidal shapes, as well as dimpled shapes during 
collisions. A motion-picture video of both of the simulations clearly illustrated that 
this behaviour is a consequence of pairing, tripling, and higher-order interactions, 
involving head-on interceptions, orbiting motions, and bypassing. In a typical 
scenario, two drops approach each other, usually side by side, a thin liquid film of 
ambient fluid is trapped between the interfaces, and the film develops a dimple under 
the action of local pressure fields. The drops move normal as well as tangential to each 
other, and eventually slide over and bypass each other, relaxing to a smooth shape until 
the next interception. 

Although there are circumstances where two drops are extremely close to each other, 
as can be seen for drops 9 and 11 in figure 7(e-h) and drops 8 and 9 in figure 8 (e), 
strong adherence and coalescence were not observed. Furthermore, at the capillary 
number Cad = 0.25, the shearing motion of the fluid is not strong enough to cause 
excessive drop distortion and fragmentation, and the drops manage to maintain a 
compact shape throughout the simulation. 

To illustrate the motion of the individual drops in more detail, in figure 9(a) we 
present the time evolution of the lateral position of the drop centres for random 1. We 
observe that drops 1 and 12, which are initially closest to the walls, migrate away from 
the walls, whereas drops 4 and 10, which are initially located roughly halfway between 
the walls and the centreline, migrate toward the walls. Drop 5 migrates from the upper 
half to the lower half of the channel, whereas drop 8 migrates from the lower half to 
the upper half of the channel. Drop 3 wiggles as it moves towards the centreline of the 
channel, and drops 6 and 9 perform upward and downward net motions. For random 
2 we observe similar scenaria of drop motions. Figure 9(a)  clearly suggests that there 
is a systematic migration of the drops away from the two walls. 

To paint a coherent picture of collective drop motions, in figure 9(b) we plot the 
trajectories of the centre of all drops initially residing within one periodic cell for 
random 1. One group of drops, including drops 5, 7 and 8 in random 1 and drops 5 
and 7 in random 2, remain within the original cell, but another group leave the cell and 
are convected upstream or downstream far from their initial position, with the 
exceptions of drops 8 and 9 in random 2 that are first convected downstream then turn 
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around. It is interesting, in particular, to note that erratic motion of drops in the first 
groups, especially that of drop 7 in random 1 and of drop 5 in random 2. There are 
considerable changes in the transverse position of drops in the second group due to 
particle interceptions. 

In order to detect preferential drop migrations, it is useful to consider the 
density distribution of the centres of the drops across the channel. For this purpose, 
following Durlofsky & Brady (1989), we divide the central region of the channel 
(-0.75 < y < 0.75) into 15 horizontal zones, calculate the number of drop centres 



Flow of suspensions of drops in a channel 

1 ,  I 

- 1 '  I I I 
1 

121 

FIGURE 7. The evolution of a random suspension of 12 drops with h = 1, Ca, = 0.25, a = 0.25, 
q5d = 0.2945 (random 1) at times: (a) t = 0, (b) 4.875, ( c )  5.645, ( d )  8.730, (e) 10.511, (f) 13.084, 
(g) 13.876, (h) 14.404, ( i)  20.168, ( j )  22.608. 

within each zone, and normalize it by the total number of drops, i.e. 12, to obtain the 
instantaneous density distribution. Finally, we compute the time-average density 
distribution within each zone over the time period 2.0 < t < 22.6, having excluded the 
initial transient period 0 < t < 2 (see figure 10). The results of this computation, shown 
in figure 9 (c, d),  reveal high peaks near the two walls and large fluctuations around the 
centreline. These features are familiar from the dynamic simulations of random 
suspensions of rigid spheres of Durlofsky & Brady (1989). In figure 9(c, d )  we also 

5 FLM 2 5 5  
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FIGURE 8. The evolution of a random suspension of 12 drops with h = 1, Ca, = 0.25, a = 0.25, 
9, = 0.2945 (random 2) at times: (a) 1 = 0, (b) 4.22, (c) 14.32, ( d )  19.68, (e) 21.76. 
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FIGURE 9. Features of the motion of a random suspension: (a) the evolution of the lateral position of 
the drop centres; (b) drop centre trajectories; (c, d) the density distribution of drop centres across the 
channel; the dashed line shows the distribution at the initial instant. (a, b, c)  are for random 1 and 
(d) for random 2. 
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show the density distribution of the initial state, which may be used as a reference to 
demonstrate global drop migrations. 

Although the general features of the number-density distribution of liquid drops are 
similar to those of rigid particles, some important differences are identified. First, the 
wall peaks for liquid drops are located farther from the walls than those for spherical 
particles ; this is clear evidence of enhanced particle migration due to deformability. 
Furthermore, in the case of liquid drops, the intensity of the wall peaks is significantly 
higher than the amplitude of the fluctuations near the centreline, in contrast to the case 
of spherical particles where the two have comparable magnitudes. This difference may 
be attributed to the moderate number of particles used in our simulations, which is 12 
at a volume fraction of 0.2945, compared to 49 particles at an areal fraction of 0.3 used 
by Durlofsky & Brady (1989). Unfortunately, the moderate number of particles used 
in our simulation does not allow us to make any definitive conclusions regarding the 
statistics of the motion. 

To complete the description of the motion of the individual drops, we consider the 
evolution of the deformation parameter D and orientation angle 0. Our results reveal 
an initial monotonic growth of D from the initial value of 0, and a monotonic decrease 
of 8 from the initial value of x/4, for all drops up to t = 2, and strong subsequent 
fluctuations. It is interesting to note that the orientation angle 6 of a couple of drops 
in both simulations becomes negative over a short period of the evolution owing to 
orbiting motions. Time-average values of D for each drop ranged between 0.3121 for 
drop 12 and 0.4405 for drop 2 in random 1 and between 0.3069 for drop 9 to 0.3822 
for drop 1 in random 2, and time-average values of 0 ranged between 0.1044~ for drop 
1 and 0.1713~ for drop 9 in random 1 and between 0.1 149n for drop 1 and 0.1768~ for 
drop 8 in random 2. More extensive data on this statistics are presented in Zhou (1993). 

Drawing instantaneous velocity profiles at various locations across the channels 
showed appreciable deviations from the linear profile that would prevail in the absence 
of the drops, due to the local motions associated with the presence of the drops (Zhou 
1993). 

Overall, comparing the statistics of the motion of the two random suspensions, we 
find basically identical behaviour which indicates that the initial configuration loses its 
significance after a certain period of evolution. 

5.2. Effective stresses 
In figure 10 (a, b) we plot the evolution of the effective viscosity pEFF and normal stress 
difference A”, and observe an initial transient period up to t = 2, and subsequent mild 
fluctuations around the well-defined mean values ( p E F F )  = 1.456 and (N) = 0.773 
for random 1 and ( p E F F )  = 1.435 and (A”) = 0.713 for random 2. The fluctuations 
of ,aEFF are significantly weaker than those of A”. The effect of the microstructure on 
the effective stresses may be illustrated by examining the instantaneous profiles shown 
in figures ~(u-J’) and 8(a-e) with reference to figure 10(a, b). We observe that at the 
times corresponding to figures 7(b,f,j) and 8 (d), pEFF reaches local maxima, whereas 
at the times corresponding to figures 7(d, h, z) and 8(e), pEFF reaches local minima. In 
the first case, the microstructure is characterized by evolving clusters with elongated 
drops; in the second case, the drops are distributed in a relatively uniform manner 
throughout the channel. The normal stress difference A” reaches local maxima in 
figures 7(c, g )  and 8(b), where the drops are oriented along the channel, and local 
minima in figures 7(e,j) and 8(c), where the drops are oriented in the principal 
direction of the shearing flow, i.e. at 45” with respect to the channel. 

Our previous experience with ordered suspensions suggests that the effective stresses 
5-2 
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FIGURE 10. The evolution of the shear effective viscosity ,uEFF, normal stress difference A'", mean drop 
deformation parameter DAV, and mean orientation angle BAv,  averaged over all drops for (a) random 
1, (b )  random 2; (c)  the evolution of the pressure drop Ap over one period, solid line is for random 
1, dashed line for random 2. 

in the suspension may correlate with the global geometrical state of the drops. To 
illustrate the dynamics of the latter, in figure 10(a, b) we plot the evolution of the mean 
values of D and 6' averaged over all drops, denoted by DAV and BAV,  and observe strong 
fluctuations around the mean values of 0.3697 and 0.1361~ for random 1 and of 0.3504 
and 0.14037~ for random 2, respectively, at large times. Comparing the four curves in 
figure 10(a, b) it is observed that the oscillations of pEFF are nearly in phase with those 
of DAv and dA" whereas those of M are nearly out of phase with those of dAv.  This 
intriguing behaviour, which is identical to that observed previously for ordered 
suspensions, suggests there exists a correlation between particle shapes and effective 
stresses, independently of the ordered or random structure of the suspension, at least 
at moderate volume fractions. 

Durlofsky & Brady (1989) found that pEFF reaches a maximum when clusters of 
particles are oriented at an angle close to 45" with respect to the walls, and a minimum 
when they are aligned in the direction of the walls. We find that pEFF reaches a 
maximum when the drops are inclined at a maximum angle with respect to the walls. 
Unfortunately, we are not able to assess the effect of orientation of the clusters 
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N = 2 N = 3 Random 1 Random 2 
(PU,,,) 1.324 1.375 1.456 1.435 
(Jf> 0.468 0.726 0.773 0.713 

TABLE 2. A comparison of the time-average effective viscosity and normal stress difference for ordered 
suspensions with N = 2, 3, and the random suspensions with h = 1, Cad = 0.25, a = 0.25 and 
q5d = 0.2945 

themselves owing to the small number of particles involved in our simulation. The 
synergy or competition between drop inclination and cluster orientation is likely to 
introduce some novel types of behaviour whose analysis requires further investigations. 

Comparing the effective shear viscosity of a random suspension of drops to that of 
a random suspension of rigid spheres (Durlofsky & Brady 1989), we find that the 
former is lower in magnitude, and exhibits noticeably weaker fluctuations. The first 
feature may be understood by noting that, in the case of liquid drops, with h = 1, the 
excess dissipation is due exclusively to motions induced by surface tension and thus it 
decreases as the capillary number is increased. The second feature might have been 
attributed to differences in the number of suspended particles used in the two 
simulations, 12 versus 49 for virtually identical areal fractions, but it has been shown 
that increasing the number of particles diminishes the amplitude of the fluctuations 
(Blanc et al. 1983). Thus, it is more likely that this difference is due to more 
fundamental physical reasons. It is known, for instance, that the near-contract 
interaction of drops is fundamentally different from that of rigid particles, for in the 
second case, strong lubrication forces assume a dominant role, and particle interactions 
cause stronger oscillations in the effective stresses (Davis, Schonberg & Rallison 1989). 
Furthermore, wall-particle interactions, and associated contributions to the effective 
stresses are weaker for drops than those for rigid particles owing to more pronounced 
particle migrations away from the walls. 

To demonstrate the consequence of ordering the microstructure, in table 2 we 
compare the time-average values ( p E F F )  and (N) for the random suspensions to 
those for ordered suspensions where drops with the same size (a = 0.25) and volume 
fraction (q5d = 0.2945) are placed homogeneously in two and three rows. We note that 
the random suspensions have a higher shear viscosity and normal stress difference, 
which may be attributed to stronger interactions among intercepting drops and 
accompanying increased rates of viscous dissipation. We may conclude that at 
q5d =, 0.2945, particle interceptions and near-contact particle interactions play a 
dominant role in determining the rheology of the suspension. It is not certain, however, 
that this trend will remain at higher volume fractions, for the energy dissipation in the 
films surrounding the drops in an ordered suspension might be larger than that due to 
the particle interceptions occurring in a disordered system. 

In figure lO(c) we show the evolution of the pressure drop over one periodic cell, Ap, 
and observe noticeable fluctuations. The overall magnitude of Ap in random 1 is 
somewhat larger than that in random 2, suggesting that Ap is sensitive to the geometry 
of the microstructure. It is interesting to note that Ap may take positive or negative 
values, and the bias in random 1 is at positive whereas that in random 2 is at negative 
values. Ap is straightforward to measure in an experimental apparatus, and our results 
advocate its use for probing the instantaneous state of the motion. 
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